A Tripartite collaboration

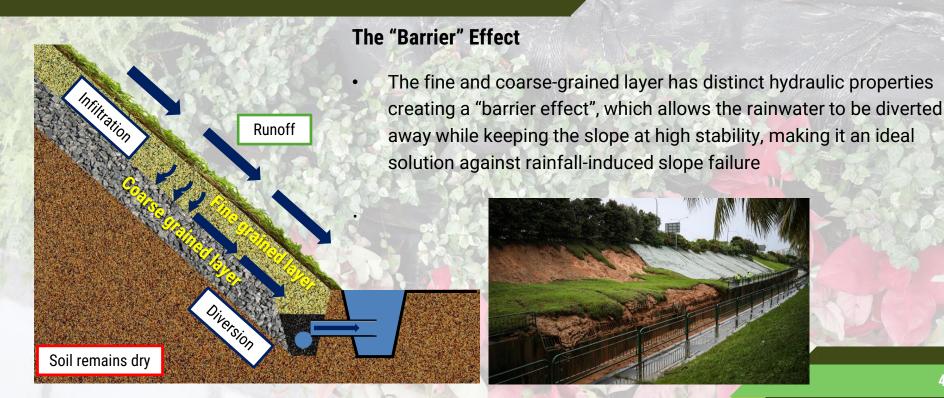
ENHANCEMENT TO THE GEOBARRIER SYSTEM

Speaker Info Hocklim Engineering Pte Ltd Chua Yuan Shen, CEO, E: <u>shen@hocklim.com</u> H: 93860239

OVERVIEW

Introduction to the Geobarrier System
 Innovation

- **Execution strategy**
- **Results**


INTRODUCTION

GeoBarrier System (GBS)

- Innovative, earth retention system
- Addresses slope failures and soil erosion
- Provides an environmentally friendly, robust and greener alternative to traditional reinforced concrete or soil wall
- Co-developed by HDB and NTU
- Being able to collaborate with HDB and NTU, giving great credibility to this project.
- Hocklim Engineering developed the subsystems to improve the production, quality and adoption of the GBS

HOW THE GEOBARRIER SYSTEM WORKS

BENEFITS OF GEOBARRIER SYSTEM

Climate Resilient Solution

Reduces Risk of Flooding Reduces CO2 Emission Enhances Slope Stability

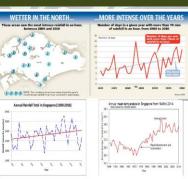
Enhances Liveability

Enhances Greenery Natural Light & Ventilation Reduces Urban Heat Island Effect

Optimizes Resources

Uses Recycled Materials Space optimization Environmentally Friendly

CAUSES AND IMPACT


Due to geographical location and climate change in the Southeast Asian region

Rainfall Induced Slope Failure

GBS is THE ideal solution

To facilitate widespread adoption of GBS to industry through its enhancement

Nationwide and regional impact!

Location of slope failures between 1982-2017

Maximum daily rainfall (1982-2017) in mm:

200 - 225
225 - 250
250 - 275
275 - 300
300 - 353

INNOVATION: Innovative Solutions Developed

Overview

Created Specialized Tools
 Best Practice Guide Expansion

INNOVATIVE SOLUTIONS

SEMI-AUTOMATIC ASSEMBLY LINE

Prefilled pre-compacted technology

Productivity Improvement

Process: From manual filling to manufacturing processing. Geobags are filled by semi-automatic hoppers.

Before: 7 bags per day

After: 15 bags per day

Promotes Lego Style modular construction (DfMA)

Due to Deformation of Geobags

Invention of Interlocking Straps

Application: Use as Interlocking strap, horizontal internal straps, lifting straps

- Improve the structure of the Geobags
- Rectify any deformations of the Geobags
- Improve the slope stability

3D Scanning Technology

Productivity Improvement

Process: Deformation Scanning of Geobags

Before: 4 bags a day

After: 30 bags a day

DfMA

Material Compaction Tools

Productivity Improvement

Process: Soil Compaction in GeoBags

Before: 10 bags a day

After: 30 bags a day

the

DfMA

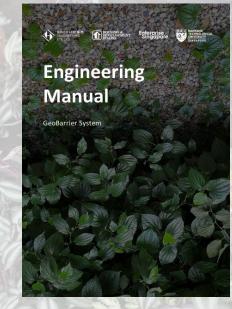
Best Practic

3D Scanning Technology

Used Sensors to confirm optimal compaction of Geobags

Example of Quality Control Card

BEST PRACTICE GUIDE


Construction manual was later expanded into guides for architects and engineers

For specialist builders

HOCKLIM # # ENGINEERING PTELTD	HOUSING & EEVELOPMENT BOARD	Enterprise Singapore	TICHNOLOBICAL WINTERSTY WINTERSTY
GeoE	Barrie	er	
Syste	em		THE
A DfMA Appr	roach		

For Architects

For Engineers

BEST PRACTICE GUIDE

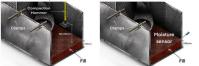
Wants the industry to **SCale Up** by guiding them on why it works and how it works

Part 1

Setting Up

This part is to ensure the Geobag is shaped properly before filling.

- 1. Consider fabricating a steel mould to provide a firm and regular shape to the empty GeoBag.
- 2. Place the GeoBag into the mould and clamp the edges securely.
- 3. Prepare the filling by placing the materials into the GeoBag.


Filling and Compaction

This part ensures that the Geobag is fully filled and ready to be used.

1. Fill the GeoBag until around 100mm in depth.

2. Proceed to compact the first layer by dropping the compaction hammer evenly over the surface after compaction of the material, the given height in the image below is recommended and does not need to be followed strict). Proceed to use a soil moisture sensor to check the layer. The moisture content should be between 10% to 15% as obtained from the compaction curve.

A Climate Resilient Solution

Unlike conventional reinforced soil wall, the GBS can maritain slope strength even during rainfall periods, making it an ideal cultation to address one of Singapore's climate change risk - increasing occurrence of rainfall-induced slope failure due to heavier rainfall. This is because the difference in permeability in the distinct layers of the GBS allows rainwater initilization to be directed away from the slope, preventing oversaturation. The rainwater is channeled through one of the layers which helps to slow down runoffs (refer to Figure 2). This reduces risk of flooding in urban environments which is also increasingly becoming a problem due to clamate change.

GBS does not use any concrete or steel, thus it has very low carbon footprint as compared to other earth retention methods such as reinforced concrete walls. In 2018 alone, manufacturing of concrete worldwide has contributed up to 5% of annual global carbon dioxide emission¹.

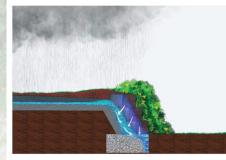


Figure 2. Managing Surface Runoff

1.2 Manual Design Calculation

According to Eurocode 7, the GeoBarrier System is to be designed for Ultimate Limit State (ULS). A sample of the calculation can be found at the end of this manual.

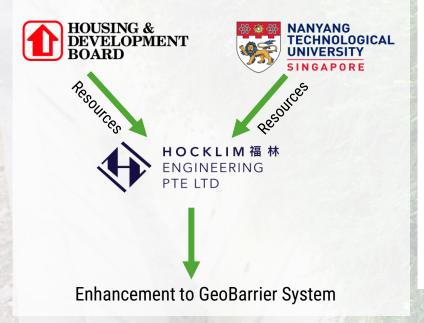
Check for ultimate state:

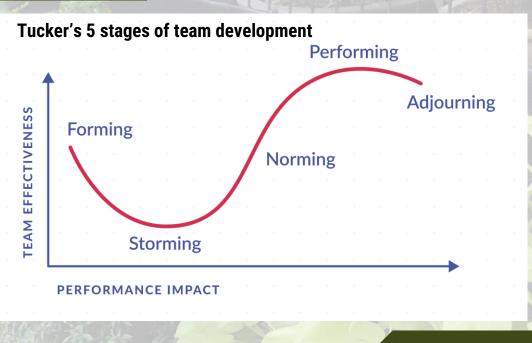
Design effect of actions $\mathbf{E}_{\mathbf{d}} \leq \mathbf{Design}$ resistance $\mathbf{R}_{\mathbf{d}}$

Combination 1: A1 + M1 + R1 Combination 2: A2 + M2 + R1

Legend: A = action; M = material properties; R = ground resistance

Design Approach 1								
Parameters			Combination 1		Combination 2			
		A1	M1	RI	A2	M2	R2	
Actions yF yE	Permanent	γG;dst	1.35			1.0		
		γG;etb	1.0			1.0		
	Variable	γQ;dst	1.5			1.3		
Soil	tan phi'	γΦ'			1.0		1.25	
γM	Effective cohesion	YO'			1.0		1.25	
	Undrained strength	You			1.0		1.4	
	Unconfined strength	Yqu			1.0		1.4	
	Weight density	w			1.0		1.0	


1.3 Key Design Checks


The factor of safety (F.O.S) for the GBS is to be checked for the following conditions

- 1. Drained case (DA1 COM1 & DA1 COM2)
- Undrained case (DA1 COM1 & DA1 COM2)
 GeoTextile check (DA1 COM1 & DA1 COM2)
- GeoTextile check (DA1 COM1 & DA1 CO
 GeoTextile sliding between layers check
- 5. Overturning (EQU)
- Sliding and Bearing Capacity check (DA1 COM1 & DA1 COM2)
 Consolidation & Settlement check

EXECUTION STRATEGY – Challenges faced in executing during the collaboration

CHALLENGES FACED

EXECUTION STRATEGY – Milestones

EXECUTION STRATEGY- MILESTONES

Panelist and exhibitor in SFF x SWITCH 2020

Guest speaker for Industry Innovation Dialogue (NTUitive)

from leading research arginations, industry prectitioners, university researches, and stratus focused on innovative sela Contact Us: +65 6592 3652 | ntuitiveinfo@ntuitive.sg | www.ntuitive.sg

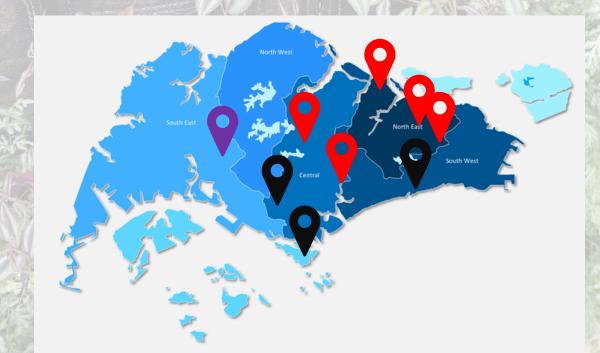
EXECUTION STRATEGY- MILESTONES

COOL IDEAS ENTERPRISE AWARD

1st Private Property GBS Project completed – Cheng Soon Garden with LianHeZaoBao coverage

不忍两代人努力付诸东流 第三代毅然涉足传统土木工程业

陈紫筠 报道	想这是一家小型公司
riyun@sph.com.sg	也不打算做下去了,
起初没有打算继承家业也不	管的好机会,可以栋
获家人支持,但因不忍心看到两	法去经营,没有什么
代人的努力付诸东流,第三代掌	蔡元森是家中老
佗人毅然涉足不熟悉的土木工程	个姐姐和一个弟弟,


父亲反正 客户包括了私人发展商以及有地 或许是接 住宅屋主。 自己的想 方。" **凭改善组屋生活创新概念**

获建屋局"企业版酷点子"奖 公司也在2018年凭着改善组

RESULTS

RESULTS - MACRO

Effects of widespread adoption (HDB, NParks, SLA, Sentosa, Private Property)

HDB Projects

Non HDB projects in Discussion (Sentosa, NParks, SLA)

9

Private Property Project

RESULTS - MACRO

Effects of widespread adoption

Engineering MasterClass Webinar: Application of Un-Saturated Soil Mechanics

Event by PT GeoStruktur Sistem Solusindo

Online

5 Sat, Jun 19, 2021, 10:30 AM - 12:30 PM (your local time)

Registration link - https://docs.google.com/forms/d/e/1FAIpQLSdqTiRrKKfi9IqcjUFTKxBt_B3h-DDIfxtrs-VYSRe83dNiOQ/viewform?usp=sf_link

99+ Yuan Shen Chua and 155 other attendees

About

The understanding of unsaturated soil mechanics principles is of interest to a wide spectrum of geotechnical problems associated with soils above the water table and compacted soils. Unsaturated soil between ground surface and water table is the interface zone between soil and environment. The unsaturated zone plays an important role in determining the impact of climate change such as increasingly frequent rainfall of high intensity or prolonged drought on geotechnical structures. In addition, most geotechnical structures are made from compacted soils that are unsaturated. Therefore, understanding of unsaturated soil behavior is paramount in geotechnical engineering, particularly in mitigating the impact of climate change.

Join our upcoming webinar on 19th June 9.30 AM WIB to learn:

1. Stress state variables and constitutive equations based on the unsaturated soil mechanics principles.

2. Laboratory testing for characterization of unsaturated soils

3. Measurements of matric suction (or negative pore-water pressures)

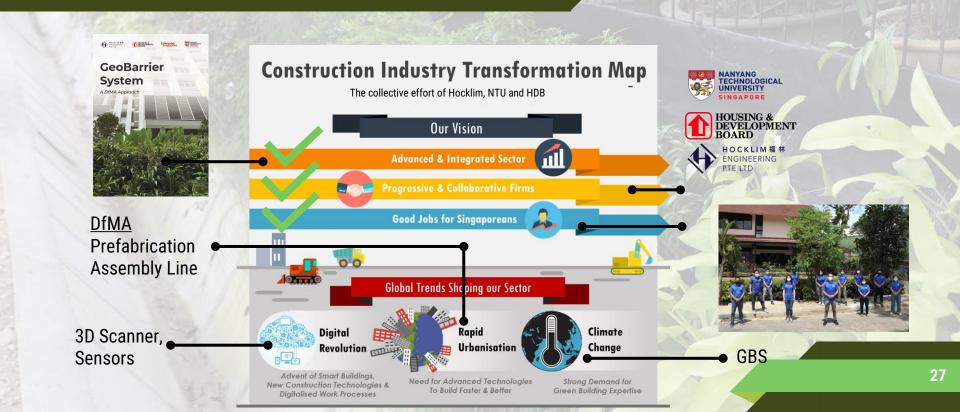
 Application of unsaturated soil mechanics in solving geotechnical engineering problems with commercial geotechnical software.

RESULTS - BUSINESS

Licensing Business Model Business development & commercial results

Distribution to Overseas Market

RESULTS - MACRO


Results	Description
Productivity improvements	 Overall Efficiency of DfMA Approach resulted in cost savings Leveraging on technology reduced the reliance on foreign manpower.
Revenue Improvements	 Gained new market segment in Geotechnical Engineering. CAGR of 18% for past 3 years
New Products	 Spin off products e.g. GBS-mini for shorter slopes Hocklim new business unit - instrumentation sensor market
A CONTRACTOR	AND SOM AND

RESULTS - MACRO

Results	Description
Customer markets	 Government Agencies - NParks, SLA, PUB. HDB Building projects Export solution overseas and filing patents
Return on investments	Breakeven point with 3 HDB projects secured so far

INDUSTRY TRANSFORMATION MAP

BENEFITS OF COOL IDEAS ENTERPRISE

Able to liaise with multiple agencies and tap on their vast resources

Funding Support from Enterprise Singapore

- Receive funding support of up to 70% of the development cost
- **Technical inputs from professionals**
- Be mentored by Professionals in technical fields


Testbed opportunities

Access to HDB's facilities and testbed sites for performance testing

Industry showcases

Pilot your solution across HDB's Estates

Cool Ideas Enterprise serve as a one stop platform for streamlining the overall development process by at least 20%

HOCKLIM A M ENGINEERING PTE LTD CONTACT US

https://www.hocklim.com/

TEL: +65 6564 5715

admin@hocklim.com