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Life Cycle Thinking to Avoid Problem Shifting

Businesses using paper instead of
plastic? Not necessarily better for the
environment, experts say

Lee Hsien Loong @
21Julyat03:01- @

We should all do our part to protect the environment. But we should do it
thoughtfully, to make sure that what we are doing will indeed make a
difference, and be for the good.

This article explains why banning plastic straws and other single use plastics
will likely not help the environment. Using metal straws will actually create
more environmental costs than disposable plastic straws. So too reusable
shopping bags, which need to be used at least 40 times to “break even”
compared to single use shopping bags.

There are no easy ways to deal with climate change. But we must do things
which make sense, such as switching to LED light bulbs and encouraging
the use of public transport.

There is an ongoing public consultation on how Singapore can become a
low-carbon city. You can find out more and share your thoughts here:
bit.ly/2JG0GcO — LHL

#TowardsZeroWaste #ClimateActionSG

Fast Retailing brands such as Uniglo and GU will be replacing plastic bags with paper ones.
(Photo: Fast Retailing)

Source: CNA, 2020
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According to a 2018 life cycle assessment (LCA) study by the Danish Ditching plastic straws is not as simple as it looks
Environmental Protection Agency, to breakeven against a single-use plastic bag: Ry A R e R T e e

» A polypropylene bag should be used 37 times. Without life cycle thinking, what NEY
« A paper bag should be used 43 times.

seem like a solution, could actually shift
or create a new problem.

« A cotton bag should be used 7,100 times.
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Life Cycle Assessment (LCA) and Life Cycle Costing (LCC)

« LCA is an evidence-based approach to measure sustainability of products, services and systems.

» LCC, employed in tandem, assesses the economic performance and is able to internalise environmental impacts as
financial costs.
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Life Cycle Assessment and GHG Protocol Standards

Life Cycle Assessment (Consequential Approach)

GHG Protocol Corporate Standard
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Source: “Corporate Value Chain (Scope 3) Accounting and Reporting Standard, Supplement to the GHG Protocol Corporate Accounting and Reporting Standard”, Greenhouse Gas Protocol, World Resource
Institute & World Business Council for Sustainable Development
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LCA - Environmental Impact of Biodiesel Derived from Used
Cooking Oil (UCO) in Singapore

- — Net life cycle emissions (kg/km) Diesel Biodiesel Percentage change
» m » S Net life cycle SO, 5.01E-01 343E-05 -99.99
Net life cycle NO, 7.99E-02 1.64E-03 —97.95
F&B Outlets Net life cycle N,O 9.02E-06 3.53E-07 —96.08
Net life cycle fossil fuel CO, 9.41E-01 431E-02 —95.42
Net life cycle CO 2.02E-02 1.91E-03 —90.54
Collection Di;‘g‘;fﬁon Total PM, s and PM,, 1.42E-01 1.35E-05 —99.99
Singapore Electricity grid 1.1% ‘ Net life cycle NMVOC 7.23E-03 6.13E-04 —91.52
29.0% Net life cycle CHy 428E-03 7.58E-04 —82.28
Key findings:

Usage | o The biodiesel has significantly lower environmental impact than
48.4% .

diesel (>82% across the board).
Potassium Hydroxide

12.5% » Carbon footprint from the use of the biodiesel is 0.006 kg CO,-eq

o per km; which is 180 times less than diesel at 1.08 kg CO,-eq per km.

B.H. Chua, H.M. Lee, and J.S.C. Low (2008), “Life cycle emissions and energy study of biodiesel derived from waste cooking oil and diesel in Singapore”, International Journal of Life Cycle Assessment, vol.
15, pp. 417-423.
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LCA - Environmental Impact of Reusable vs Disposable Masks

Breakdown Carbon Footprint of Reusable vs Carbon Footprint Break Even of Reusable Breakdown of Solid Waste Generated by Solid Waste Break Even of Reusable vs
Disposable Mask over 30 days vs Disposable Mask Reusable vs Disposable Mask over 30 Days Disposable Mask
8 days to 6 days to
04 break even o 0.16 break even
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B Production M Transport M Usage I End-of-Life Réusable Mask B Production M Transport M Usage ® End-of-Life = = ‘Reusable Mask (over 30 days)
= Disposable Mask —— Disposable Mask

P Assumptions:
» The masks provide a comparable function, i.e. similar efficacy in reducing the spread of respiratory droplets.
» The disposable mask is used for a day; while the reusable mask is used for 30 days.
* 1/3 of SG population returns to work and school post-circuit breaker.

Key findings of using the reusable vs disposable mask (over a 30-day period):

« Has 3.3 times less carbon footprint and generates 5 times less solid waste.

» Has a lower carbon footprint after only 8 days and generates less solid waste after only 6 days.

« (Can avoid a total carbon footprint of 590 tonnes of CO,-eq and 220 tonnes of solid waste over the 30-day period.

AW.L. Lee, ERK. Neo, Z.Y. Khoo, Z.Q. Yeo, Y.S. Tan, S.Y. Chng, W.J. Yan, B.K. Lok, J.S.C. Low (2021), “Life cycle assessment of single-use surgical and embedded filtration layer (EFL) reusable face mask”,
Resources, Conservation and Recycling, vol. 170, no. 105580, July 2021.

aMA Tp
*’ Singapore Institute * o}

of Manufacturing
Technology
SIMTech

4 Industry

<,
20yo



LCA - Carbon Abatement Potential of CO, Mineralisation
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Key findings:

« Taking into account life cycle GHG emissions and avoidance of import sand, a net abatement of 115.78 kg CO,-eq per tonne of CO,

sequestered can be achieved when minerals are imported from Australia and heating energy is not optimised.

« Transportation (land and sea) of mineral feedstock (raw serpentine) contributes significantly (~47%) to life cycle GHG emissions.

« If the mineral feedstock can be sourced from a neighbouring country, and industrial waste heat utilised, the net abatement can
increase up to 903.59 kg CO,-eq per tonne of CO, sequestered.

ZY. Khoo, EH.Z. Ho, Y.Q. Li, Z.Q. Yeo, J.S.C. Low, J. By, L.S.O. Chia (2021), “Life cycle assessment of a CO2 mineralisation technology for carbon capture and utilisation in Singapore”, Journal of CO,

Utilization, vol. 44, 101378.
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LCA - Environmental Impact of Singapore’s Water System

Environmental Impact of
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Key findings:

« Carbon footprint of tap water is only about 60% that of NEWater as tap water has a large mix of local catchment and

imported water.

« Conversely, piped NEWater has significantly lower water depletion potential as it virtually does not abstract water from

freshwater bodies.

» In water-scarce Singapore, this is a trade-off in moving towards water self-sufficiency.

C. Hsien, J.S.C. Low, S.F. Chan, and W.H. Tan (2019), “Life cycle assessment of water supply in Singapore — A water-scarce urban city with multiple water sources”, Resources, Conservation and Recycling,

vol. 151, 104476.
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LCA - Environmental Impact of Food Consumed in Singapore

GHG Emissions (kg CO,;-eq per kg of food)
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Key findings:
» GHG emissions of beef is the highest on a per kg basis while pork is the highest based on a per capita consumption.

* Increasing local food production (i.e. 30 by 30) can offset GHG emissions from the transportation of food over longer
distances.

» However, to more meaningfully reduce total GHG emissions of food consumed in Singapore, local diet needs to shift to
one which is more plant-based.

Full report downloadable at: https://www.ecosperity.sg/content/dam/ecosperity/en/reports/Environmental-Impact-of-Key-Food-Items-in-Singapore_Oct2019.pdf
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https://www.ecosperity.sg/content/dam/ecosperity/en/reports/Environmental-Impact-of-Key-Food-Items-in-Singapore_Oct2019.pdf

LCC - Cost-Benefit Analysis of Circular Production/Recycling of
Flat Panel Display (FPD) Monitors

e @

Manufacturing E-waste

Materials & Assembly Recycling

Key findings:

» Closed-loop recycling of end-of-life (EoL) FPD monitors
will be a cost incurring activity despite recovery of
some valuable metals (e.g. aluminium, silver and gold).

* However, the circular production system will still be
profitable (i.e. positive NPV) as a whole.

« The major cost driver is the treatment of the LCD
panel containing mercury in the backlights, which is
hazardous and laborious to handle.
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J.S.C. Low, W.F. Lu, and B. Song (2014), “Product Structure-Based Integrated Life Cycle Analysis (PSILA): a technique for cost modelling and analysis of closed-loop production systems”, Journal of Cleaner

Production, vol. 70, pp. 105-117.
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LCC - Designing a Remanufacturing System for Used PC for the

Cambodian Market

Used Parts Laptop Computers _ |
istributio
Supply Remanufacturing
Cambodia
\ Remanufacturing Plant / Customers.

Singapore

Suppliers

Key findings to optimise system:

Despite the risks, the benefits of setting up the main
remanufacturing activity in Cambodia outweigh the costs
due to much lower CAPEX and OPEX in the long-term.

A system designed with lower initial capacity —but with
allowance to expand — will be effective in mitigating market
risks.

Implementing a flexible shift policy will further enhance the
system’s ability in mitigating such risks as well as agility in
capturing the upsides of market volatility.
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m Base Case under Uncertainties
1,600.00 @Flexible Design 1 under Uncertainties
83 Flexible Design 3 under Uncertainties
1,400.00 |  mFlexible Design 5 under Uncertainties
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Metrics Base case design Flexible Design 1 Flexible Design 3 Flexible Design 5 Best design?
under uncertainties under uncertainties under uncertainties under uncertainties
Initial CAPEX $180 000 $120 000 $180 000 $120 000 Flexible Designs 1 & 5
Total CAPEX $180 000 $150 000 $180 000 $150 000 Flexible Designs 1 & 5
Mean NPV $1 524 519 $1 611 286 $1 640 028 $1 725 505 Flexible Design 5
Standard deviation $328 919 $286 848 $353 159 $324 936 Flexible Design 1
Pos $2 035 699 $2 026 187 $2 202 531 $2 233 989 Flexible Design 5
Ps $950 119 $1 093 909 $1 038 790 $1 164 845 Flexible Design 5

J.S.C. Low and Y.T. Ng (2018), “Improving the Economic Performance of Remanufacturing Systems
through Flexible Design Strategies: A Case Study Based on Remanufacturing Laptop Computers for the
Cambodian Market”, Business Strategy and the Environment, vol. 27, no. 4, pp. 503-527.
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Enabling Quantitative Measurements in the Green Compass

Taking the value chain or life cycle perspective, the Green Compass aims to enable
businesses and industries to transition towards low-carbon and circular economy.

Operations Product Life Cycle Supply Network

Carbon Energy Q Water &y | Material & Waste

Businesses are assessed
qualitatively and
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Summary

Life Cycle Assessment _ WithOUt Iife CyCIE thinking, What may Seem |ike

M e | a solution, could actually shift or create a new
| I —[ Renewal Cost : p ro b I e m .

|

)

—[ Operation Cost

—[ Maintenance Cost

Assessment

Life Cycle Impact —[ End-of-Life Cost

Life Cycle Assessment (LCA) and Life Cycle

Costing (LCC) incorporates life cycle thinking to
measure sustainability of products, services and
entire ecosystems.

\,\ Applied systematically, they can support
O  collective and decisive action towards green
transformation.
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