Measuring Sustainability with Life Cycle Assessment (LCA) and Life Cycle Costing (LCC)

Jonathan S.C. Low, PhD

25 May 2021
Life Cycle Thinking to Avoid Problem Shifting

Businesses using paper instead of plastic? Not necessarily better for the environment, experts say

According to a 2018 life cycle assessment (LCA) study by the Danish Environmental Protection Agency, to break even against a single-use plastic bag:

- A polypropylene bag should be used 37 times.
- A paper bag should be used 43 times.
- A cotton bag should be used 7,100 times.

Without life cycle thinking, what may seem like a solution, could actually shift or create a new problem.
Life Cycle Assessment (LCA) and Life Cycle Costing (LCC)

- LCA is an evidence-based approach to measure sustainability of products, services and systems.
- LCC, employed in tandem, assesses the economic performance and is able to internalise environmental impacts as financial costs.

Step 1: Framing the Study
- Purpose of the study
- Target audience/stakeholders
- Questions to be answered..?
 ✓ Define functional unit and system boundary

Step 2: Building the Model
 ✓ Model and collect data on the flows of resources into, within and out of the system

Step 3: Computing the KPIs
 ✓ Convert the Life Cycle Inventory Analysis into relevant indicators (e.g. carbon footprint and net present value)

Step 4: Utilising the Findings
 - Sensitivity and uncertainty analyses
 - Scenario analysis
 ✓ Answer questions asked in step 1
Life Cycle Assessment and GHG Protocol Standards

Life Cycle Assessment (Consequential Approach)

<table>
<thead>
<tr>
<th>GHG Protocol Corporate Standard</th>
<th>Avoided Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope 1</td>
<td></td>
</tr>
<tr>
<td>Direct on-site greenhouse gas emissions</td>
<td></td>
</tr>
<tr>
<td>Direct emissions from on-site stationary combustion</td>
<td></td>
</tr>
<tr>
<td>Mobile combustion from company owned vehicles</td>
<td></td>
</tr>
<tr>
<td>Scope 2</td>
<td></td>
</tr>
<tr>
<td>Embodied emissions of purchased utilities (electricity, water, steam, heating, and cooling)</td>
<td></td>
</tr>
<tr>
<td>Scope 3</td>
<td></td>
</tr>
<tr>
<td>Embodied emissions of purchased goods and services</td>
<td></td>
</tr>
<tr>
<td>Upstream and downstream transportation, not controlled by company</td>
<td></td>
</tr>
<tr>
<td>Avoided embodied emissions resulting from displaced activities as a consequence of the existence of the current system under study</td>
<td></td>
</tr>
</tbody>
</table>

Emission sources

- Direct on-site greenhouse gas emissions
- Direct emissions from on-site stationary combustion
- Mobile combustion from company owned vehicles
- Embodied emissions of purchased utilities (electricity, water, steam, heating, and cooling)
- Embodied emissions of purchased goods and services
- Upstream and downstream transportation, not controlled by company
- Avoided embodied emissions resulting from displaced activities as a consequence of the existence of the current system under study

Key findings:

- The **biodiesel has significantly lower environmental impact** than diesel (>82% across the board).
- **Carbon footprint from the use of the biodiesel** is 0.006 kg CO$_2$-eq per km; which is **180 times less than diesel** at 1.08 kg CO$_2$-eq per km.

LCA – Environmental Impact of Reusable vs Disposable Masks

Assumptions:
- The masks provide a comparable function, i.e. similar efficacy in reducing the spread of respiratory droplets.
- The disposable mask is used for a day; while the reusable mask is used for 30 days.
- 1/3 of SG population returns to work and school post-circuit breaker.

Key findings of using the reusable vs disposable mask (over a 30-day period):
- Has **3.3 times less carbon footprint** and generates **5 times less solid waste**.
- Has a **lower carbon footprint after only 8 days** and generates **less solid waste after only 6 days**.
- Can **avoid a total carbon footprint of 590 tonnes of CO₂-eq** and **220 tonnes of solid waste** over the 30-day period.

Key findings:

• Taking into account life cycle GHG emissions and avoidance of import sand, a net abatement of 115.78 kg CO$_2$-eq per tonne of CO$_2$ sequestered can be achieved when minerals are imported from Australia and heating energy is not optimised.

• Transportation (land and sea) of mineral feedstock (raw serpentine) contributes significantly (~47%) to life cycle GHG emissions.

• If the mineral feedstock can be sourced from a neighbouring country, and industrial waste heat utilised, the net abatement can increase up to 903.59 kg CO$_2$-eq per tonne of CO$_2$ sequestered.

Key findings:

- **Carbon footprint of tap water is only about 60% that of NEWater** as tap water has a large mix of local catchment and imported water.
- Conversely, piped **NEWater has significantly lower water depletion potential** as it virtually does not abstract water from freshwater bodies.
- In water-scarce Singapore, this is a **trade-off in moving towards water self-sufficiency**.

Key findings:

• GHG emissions of **beef is the highest** on a per kg basis while **pork is the highest** based on a per capita consumption.

• Increasing local food production (i.e. 30 by 30) can **offset GHG emissions** from the **transportation** of food over longer distances.

• However, to more meaningfully **reduce total GHG emissions** of food consumed in Singapore, **local diet** needs to shift to one which is **more plant-based**.

LCC – Cost-Benefit Analysis of Circular Production/Recycling of Flat Panel Display (FPD) Monitors

Key findings:
• Closed-loop recycling of end-of-life (EoL) FPD monitors will be a cost incurring activity despite recovery of some valuable metals (e.g. aluminium, silver and gold).
• However, the circular production system will still be profitable (i.e. positive NPV) as a whole.
• The major cost driver is the treatment of the LCD panel containing mercury in the backlights, which is hazardous and laborious to handle.

LCC – Designing a Remanufacturing System for Used PC for the Cambodian Market

Key findings to optimise system:

- Despite the risks, the benefits of setting up the main remanufacturing activity in Cambodia outweigh the costs due to much lower CAPEX and OPEX in the long-term.
- A system designed with lower initial capacity – but with allowance to expand – will be effective in mitigating market risks.
- Implementing a flexible shift policy will further enhance the system’s ability in mitigating such risks as well as agility in capturing the upsides of market volatility.

Enabling Quantitative Measurements in the Green Compass

Taking the value chain or life cycle perspective, the Green Compass aims to enable businesses and industries to transition towards low-carbon and circular economy.

Qualitative Measurements

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>Energy Management in Operations</th>
<th>Water Management in Operations</th>
<th>Material Management in Operations</th>
<th>Carbon Management in Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>The organisation is involved in setting new industry standards and is known for innovations related to energy efficiency and/or energy consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to water usage efficiency, recycling of water, and/or water consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to material usage efficiency, recycling of material, and/or material consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to carbon emissions reduction.</td>
<td>The organisation is involved in setting new industry standards and is known for innovations related to energy efficiency and/or energy consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to water usage efficiency, recycling of water, and/or water consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to material usage efficiency, recycling of material, and/or material consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to carbon emissions reduction.</td>
<td>The organisation is involved in setting new industry standards and is known for innovations related to energy efficiency and/or energy consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to water usage efficiency, recycling of water, and/or water consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to material usage efficiency, recycling of material, and/or material consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to carbon emissions reduction.</td>
<td>The organisation is involved in setting new industry standards and is known for innovations related to energy efficiency and/or energy consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to water usage efficiency, recycling of water, and/or water consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to material usage efficiency, recycling of material, and/or material consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to carbon emissions reduction.</td>
</tr>
<tr>
<td>4</td>
<td>An energy management system is in place to continually and methodically reduce absolute energy consumption and/or improve energy efficiency within the organisation. A water management system is in place to reduce methodically and continually absolute water consumption within the organisation. A material and waste management system is in place to reduce methodically and continually absolute material consumption and waste generation within the organisation. A carbon management system/programme is in place to continually and methodically reduce absolute carbon emissions (scope 1, 2, and 3) within the organisation.</td>
<td>The breakdown of energy consumption is done throughout the organisation, beyond known hotspots. The breakdown of water consumption is done throughout the organisation, beyond known hotspots. The breakdown of material consumption and waste generation are done throughout the organisation, beyond known hotspots. The concept of indirect carbon emission along the value chain (scope 3 of GHG protocol) is known and indirect emissions along the value chain’s up- and downstream are tracked.</td>
<td>The organisation is involved in setting new industry standards and is known for innovations related to energy efficiency and/or energy consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to water usage efficiency, recycling of water, and/or water consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to material usage efficiency, recycling of material, and/or material consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to carbon emissions reduction.</td>
<td>The organisation is involved in setting new industry standards and is known for innovations related to energy efficiency and/or energy consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to water usage efficiency, recycling of water, and/or water consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to material usage efficiency, recycling of material, and/or material consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to carbon emissions reduction.</td>
</tr>
<tr>
<td>3</td>
<td>The organisation is involved in setting new industry standards and is known for innovations related to energy efficiency and/or energy consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to water usage efficiency, recycling of water, and/or water consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to material usage efficiency, recycling of material, and/or material consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to carbon emissions reduction.</td>
<td>The organisation is involved in setting new industry standards and is known for innovations related to energy efficiency and/or energy consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to water usage efficiency, recycling of water, and/or water consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to material usage efficiency, recycling of material, and/or material consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to carbon emissions reduction.</td>
<td>The organisation is involved in setting new industry standards and is known for innovations related to energy efficiency and/or energy consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to water usage efficiency, recycling of water, and/or water consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to material usage efficiency, recycling of material, and/or material consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to carbon emissions reduction.</td>
<td>The organisation is involved in setting new industry standards and is known for innovations related to energy efficiency and/or energy consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to water usage efficiency, recycling of water, and/or water consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to material usage efficiency, recycling of material, and/or material consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to carbon emissions reduction.</td>
</tr>
<tr>
<td>2</td>
<td>Energy consumption is monitored within the organisation. Water consumption and effluent discharge are monitored within the organisation. Material consumption and waste generation are monitored within the organisation. Carbon emissions based on Scope 1 & 2 in GHG protocol are monitored within the organisation. Key areas/facilities/processes that contribute to carbon emissions have been identified.</td>
<td>Energy consumption is monitored within the organisation. Water consumption and effluent discharge are monitored within the organisation. Material consumption and waste generation are monitored within the organisation. Carbon emissions are monitored within the organisation.</td>
<td>Energy consumption is monitored within the organisation. Water consumption and effluent discharge are monitored within the organisation. Material consumption and waste generation are monitored within the organisation. Carbon emissions are monitored within the organisation.</td>
<td>Energy consumption is monitored within the organisation. Water consumption and effluent discharge are monitored within the organisation. Material consumption and waste generation are monitored within the organisation. Carbon emissions are monitored within the organisation.</td>
</tr>
<tr>
<td>1</td>
<td>Energy consumption is tracked as part of operational costs. Water consumption and effluent discharge are tracked as part of operational costs. Material consumption and waste generation tracked as part of operational costs and compliance. Waste reduction plan is prepared as part of compliance. Carbon emissions are monitored within the organisation.</td>
<td>Energy consumption is tracked as part of operational costs. Water consumption and effluent discharge are tracked as part of operational costs. Material consumption and waste generation tracked as part of operational costs and compliance. Waste reduction plan is prepared as part of compliance. Carbon emissions are monitored within the organisation.</td>
<td>Energy consumption is tracked as part of operational costs. Water consumption and effluent discharge are tracked as part of operational costs. Material consumption and waste generation tracked as part of operational costs and compliance. Waste reduction plan is prepared as part of compliance. Carbon emissions are monitored within the organisation.</td>
<td>Energy consumption is tracked as part of operational costs. Water consumption and effluent discharge are tracked as part of operational costs. Material consumption and waste generation tracked as part of operational costs and compliance. Waste reduction plan is prepared as part of compliance. Carbon emissions are monitored within the organisation.</td>
</tr>
<tr>
<td>0</td>
<td>Energy management is not considered within the organisation. Water management is not considered within the organisation. Material management is not considered within the organisation. Carbon management is not considered within the organisation.</td>
<td>Energy management is not considered within the organisation. Water management is not considered within the organisation. Material management is not considered within the organisation. Carbon management is not considered within the organisation.</td>
<td>Energy management is not considered within the organisation. Water management is not considered within the organisation. Material management is not considered within the organisation. Carbon management is not considered within the organisation.</td>
<td>Energy management is not considered within the organisation. Water management is not considered within the organisation. Material management is not considered within the organisation. Carbon management is not considered within the organisation.</td>
</tr>
</tbody>
</table>

Quantitative Measurements

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>Absolute Energy</th>
<th>Water</th>
<th>Waste</th>
<th>Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>The organisation is involved in setting new industry standards and is known for innovations related to energy efficiency and/or energy consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to water usage efficiency, recycling of water, and/or water consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to material usage efficiency, recycling of material, and/or material consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to carbon emissions reduction.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>An energy management system is in place to continually and methodically reduce absolute energy consumption and/or improve energy efficiency within the organisation. A water management system is in place to reduce methodically and continually absolute water consumption within the organisation. A material and waste management system is in place to reduce methodically and continually absolute material consumption and waste generation within the organisation. A carbon management system/programme is in place to continually and methodically reduce absolute carbon emissions (scope 1, 2, and 3) within the organisation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The organisation is involved in setting new industry standards and is known for innovations related to energy efficiency and/or energy consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to water usage efficiency, recycling of water, and/or water consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to material usage efficiency, recycling of material, and/or material consumption reduction. The organisation is involved in setting new industry standards and is known for innovations related to carbon emissions reduction.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Energy consumption is monitored within the organisation. Water consumption and effluent discharge are monitored within the organisation. Material consumption and waste generation are monitored within the organisation. Carbon emissions based on Scope 1 & 2 in GHG protocol are monitored within the organisation. Key areas/facilities/processes that contribute to carbon emissions have been identified.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Energy consumption is tracked as part of operational costs. Water consumption and effluent discharge are tracked as part of operational costs. Material consumption and waste generation tracked as part of operational costs and compliance. Waste reduction plan is prepared as part of compliance. Carbon emissions are monitored within the organisation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Energy management is not considered within the organisation. Water management is not considered within the organisation. Material management is not considered within the organisation. Carbon management is not considered within the organisation.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Businesses are assessed qualitatively and quantitatively.

Tools implemented aim to achieve tangible improvements.
Without **life cycle thinking**, what may seem like a solution, could actually shift or create a new problem.

Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) incorporates life cycle thinking to measure sustainability of products, services and entire ecosystems.

Applied systematically, they can **support collective and decisive action** towards green transformation.