

BUILDING SUSTAINABLE, RESILIENT, AND LIVEABLE CITIES OF TOMORROW

4TH - 5TH OCTOBER 2023

FCLG - Powering the City (POW)

Urban Energy Demand and Supply with Building Integrated Photovoltaics

By A/Prof. Bu Sung LEE, Francis SCSE, NTU

Singapore Green plan 2030

•Plant 1 million more trees

•Quadruple solar energy deployment by 2025

•Reduce the waste sent to landfill by 30% by 2030

•At least 20% of schools to be carbon neutral by 2030

•All newly registered cars to be cleaner-energy models from 2030

URBAN SOLUTIONS

SUSTAINABILITY

CONGRESS 202

[1] Green Plan, https://www.greenplan.gov.sg/

Why Building-integrated Photovoltaics (BIPV)?

Singapore: resource-constrained city-state, has limited renewable energy options [2]

- (1) Low wind speed in Singapore (about 2m/s < 4.5 m/s)
- (2) No tidal power generation due to the narrow tidal range and calm seas.
- (3) No hydroelectric power
- (4) No geothermal energy sources are available.
- (5) Low biomass-based energy generation
- (6) Nuclear power

[1] Green Plan, https://www.greenplan.gov.sg/

and prospects. Sustainability, 14(16), p.10160.

disciplines-same-sustainable-goals

Solar energy is the only renewable energy source

Limited land resources and dense metropolitan regions in Singapore.

Building-integrated Photovoltaics (BIPV) systems is a viable solution

URBAN SOLUTIONS

R&D CONGRESS 2023

TH - STH OCTOBER 2

[2] Chen, T., An, Y. and Heng, C.K., 2022. A review of building-integrated photovoltaics in Singapore: Status, barriers,

[3] Different disciplines, same sustainable goals. https://www.ntu.edu.sgANDrSUSTA Hodeshervy/detail/different-

Singapore plan to import Indonesia clean energy advancing as region develops renewables 'faster and bigger than people realise'

- Singapore currently generates 95 per cent of its electricity from natural gas, and lack of space limits the building of solar and wind farms
- Asia is rapidly developing a similar energy market to Europe, where countries routinely import electricity from neighbours

8 Sept 2023

Singapore gives conditional nod for 2GW of electricity imports from Indonesia CNA 8 Sept 2023

Singapore to get 1GW of renewable energy from Cambodia in largest electricity import to date ST, 17 mar 2023

25 Oct 2021 | 03:07 UT(

FNERGY TRANSITION | NATURAL GAS | PETROCHEMICALS

Singapore to import up to 4

GW of low-carbon

electricity by 2035

Objective of POW

- develop a holistic, multi-scale and interdisciplinary approach for assessing large scale deployment of BIPV in urban contexts under different climatic, socio-economic and architectural / urban conditions.
- use Zurich and Singapore as exemplary and complementary case studies.

POW Architectures and work packages

Energy WP

High-resolution PV simulation

Irradiation * Efficiency = too optimistic!

Detailled calculation

High-resolution PV modelling. McCarty et al. (ongoing)

Energy WP

High resolution PV simulation

High-resolution PV modelling. McCarty et al. (ongoing)

Energy WP

PV System Architect Optimization

[a]	[e]	[i]
[b]	[f]	[i]
[c]	[g]	[k]
[d]	[h]	[1]

Fig. 13. The String Layout proposed by the genetic optimization. Modules with the same color are part of the same string (i.e. electrically connected). The division results in 5 strings of length 8 and 5 of length 7.

High-resolution, parametric BIPV and electrical systems modeling and design. Walker et al (2019).

Life Cycle Assessment WP

GWP, life cycle assessment

Jianxiang Ma. Dynamic Parametric LCA of BIPV Design, Master Thesis Chair of Sustainable Construction ETH Zürich

Fig. 1. Structure of glass-backsheet (G-BS) module (a) and glass-glass (G-G) module (b).

Müller, A. et al. A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and **CITIES** inventory. Sol. Energy Mater. Sol. Cells (20**2**A)BORATORY

Galimshina et al. (ongoing)

Socio-economics WP

Jidong Kang et al. (ongoing)

building 5

Mobility WP

2011

KAMPUNG PASIR PUTIH

Mobility in Singapore extracted from city-scale mobile phone data

WOODLANDS

Thank you!

